.. _theory: ******************************* Transition Frequency Components ******************************* The NMR spectral simulation in **mrsimulator** is based on Symmetry Pathways in Solid-State NMR by Grandinetti *et al.* [#f1]_ Introduction to NMR frequency components ======================================== The nuclear magnetic resonance (NMR) frequency, :math:`\Omega(\Theta, i, j)`, for the :math:`\left|i\right> \rightarrow \left|j\right>` transition, where :math:`\left|i\right>` and :math:`\left|j\right>` are the eigenstates of the stationary-state semi-classical Hamiltonian, can be written as a sum of frequency components, .. math:: :label: eq_1 \Omega(\Theta, i, j) = \sum_k \Omega_k (\Theta, i, j), where :math:`\Theta` is the sample's lattice spatial orientation described with the Euler angles :math:`\Theta = \left(\alpha, \beta, \gamma\right)`, and :math:`\Omega_k` is the frequency component from the :math:`k^\text{th}` interaction of the stationary-state semi-classical Hamiltonian. Each frequency component, :math:`\Omega_k (\Theta, i, j)`, is written as the product, .. math:: :label: eq_2 \Omega_k(\Theta, i, j) = \omega_k ~ \Xi_L^{(k)}(\Theta) ~ \xi_\ell^{(k)}(i, j), where :math:`\omega_k` is the size of the :math:`k^\text{th}` frequency component, and :math:`\Xi_L^{(k)}(\Theta)` and :math:`\xi_\ell^{(k)}(i, j)` are the sample's spatial orientation and quantized NMR transition functions corresponding to the :math:`L^\text{th}` rank spatial and the :math:`\ell^\text{th}` rank spin irreducible spherical tensors, respectively. ---- The spatial orientation function, :math:`\Xi_L^{(k)}(\Theta)`, in Eq. :eq:`eq_2`, is defined in the laboratory frame, where the :math:`z`-axis is the direction of the external magnetic field. This function is the spatial contribution to the observed frequency component arising from the rotation of the :math:`L^\text{th}`-rank irreducible tensor, :math:`\varrho_{L,n}^{(k)}`, from the principal axis system to the lab frame via Wigner rotation which follows, .. math:: :label: eq_3 \Xi_L^{(k)}(\Theta) = \sum_{n_0=-L}^L D^L_{n_0,0}(\Theta_0) \sum_{n_1=-L}^L D^L_{n_1,n_0}(\Theta_1) ~ ... ~ \sum_{n_i=-L}^L D^L_{n_i,n}(\Theta_i) ~~ \varrho_{L,n}^{(k)}. .. Here, :math:`\varrho_{L,n}^{(k)}` is defined in the principal axis system of .. the interaction tensor, here generically denoted with .. :math:`\boldsymbol{\rho}^{(\lambda)}`, and the subscript .. :math:`n \in [-L, L]`. .. The relationship between :math:`\boldsymbol{\rho}^{(\lambda)}` and .. :math:`\varrho_{L,n}^{(k)}` is described in the next section. Here, the term :math:`D^L_{n_i,n_j}(\Theta)` is the `Wigner rotation matrix element `_, generically denoted as, .. math:: :label: eq_4 D^L_{n_i,n_j}(\Theta) = e^{-i n_i \alpha} d_{n_i, n_j}^L(\beta) e^{-i n_j \gamma}, where :math:`d_{n_i, n_j}^L(\beta)` is Wigner small :math:`d` element. ---- In the case of the single interaction Hamiltonian, that is, in the absence of cross-terms, **mrsimulator** further defines the product of the size of the :math:`k^\text{th}` frequency component, :math:`\omega_k`, and the :math:`L^\text{th}`-rank irreducible tensor components, :math:`\varrho_{L,n}^{(k)}`, in the principal axis system of the interaction tensor, :math:`\boldsymbol{\rho}^{(\lambda)}`, as the scaled spatial orientation tensor (sSOT) component, .. math:: :label: eq_5 \varsigma_{L,n}^{(k)} = \omega_k \varrho_{L,n}^{(k)}, of rank :math:`L`, also defined in the principal axis system of the interaction tensor. Using Eqs. :eq:`eq_3` and :eq:`eq_5`, we re-express Eq. :eq:`eq_2` as .. math:: :label: eq_6 \Omega_k(\Theta, i, j) = \sum_{n_0=-L}^L D^L_{n_0,0}(\Theta_0) \sum_{n_1=-L}^L D^L_{n_1,n_0}(\Theta_1) ~ ... ~ \sum_{n_i=-L}^L D^L_{n_i,n}(\Theta_i) ~~ \varpi_{\ell, L, n}^{(k)}, where .. math:: :label: eq_7 \varpi_{\ell, L, n}^{(k)} = \varsigma_{L,n}^{(k)}~~\xi_\ell^{(k)}(i, j) is the frequency tensor component (FT) of rank :math:`L`, defined in the principal axis system of the interaction tensor and corresponds to the :math:`\left|i\right> \rightarrow \left|j\right>` spin transition. .. |quad_description| replace:: The parameter :math:`\omega_q` is defined as :math:`\omega_q = \frac{2\piC_q}{2I(2I-1)}`, where :math:`C_q` is the quadrupole coupling constant, and :math:`I` is the spin quantum number of the quadrupole nucleus. The parameters :math:`\eta_q` and :math:`\omega_0` are the quadrupole asymmetry and Larmor frequency of the nucleus, respectively. .. .. cssclass:: table-bordered table-hover centered .. .. list-table:: A list of :math:`\mathcal{R}_{L,n}^{(k)}` from Eq. :eq:`eq_5` .. of rank :math:`L` given in the principal axis system for the .. :math:`M^\text{th}` order perturbation expansion of the .. interactions supported in mrsimulator. .. :widths: 20 80 .. :header-rows: 1 .. * - Interaction .. - Description .. * - Nuclear shielding .. - The parameter :math:`\varrho_\text{iso}` is the isotropic nuclear .. shielding. .. .. cssclass:: table-bordered table-hover centered .. .. list-table:: .. :widths: 20 20 60 .. :header-rows: 1 .. * - Order, :math:`M` .. - Rank, :math:`L` .. - :math:`\mathbf{\mathcal{R}}_{L,n}` .. * - 1 .. - 0 .. - :math:`\mathcal{R}_{0,0}^{(\sigma)} = \varrho_\text{iso}` .. |SOF| replace:: :math:`\mathbf{\varsigma}_{L,n}^{(k)}` .. |L| replace:: :math:`L` .. |Mth| replace:: :math:`M^\mathrm{th}` .. _spatial_orientation_table: Scaled spatial orientation tensor (sSOT) components in PAS, |SOF| ================================================================= Single nucleus scaled spatial orientation tensor components ----------------------------------------------------------- Nuclear shielding interaction ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The nuclear shielding tensor, :math:`\boldsymbol{\rho}^{(\sigma)}`, is a second-rank reducible tensor, which can be decomposed into a sum of the zeroth-rank isotropic, first-rank anti-symmetric, and second-rank traceless symmetric irreducible spherical tensors. In the principal axis system, the zeroth-rank, :math:`\rho_{0,0}^{(\sigma)}` and the second-rank, :math:`\rho_{2,n}^{(\sigma)}`, irreducible tensors follow, .. math:: \begin{array}{c c c c} \rho_{0,0}^{(\sigma)} = -\sqrt{3} \sigma_\text{iso}, & \rho_{2,0}^{(\sigma)} = \sqrt{\frac{3}{2}} \zeta_\sigma, & \rho_{2,\pm1}^{(\sigma)} = 0, & \rho_{2,\pm2}^{(\sigma)} = - \frac{1}{2}\eta_\sigma \zeta_\sigma, \end{array} where :math:`\sigma_\text{iso}, \zeta_\sigma`, and :math:`\eta_\sigma` are the isotropic nuclear shielding, shielding anisotropy, and shielding asymmetry of the site, respectively. The shielding anisotropy and asymmetry are defined using Haeberlen notation. **First-order perturbation** The size of the frequency component, :math:`\omega_k`, from the first-order perturbation expansion of Nuclear shielding Hamiltonian is :math:`-\omega_0=\gamma B_0`, where :math:`\omega_0` is the Larmor angular frequency of the nucleus, and :math:`\gamma`, :math:`B_0` are the gyromagnetic ratio of the nucleus and the macroscopic magnetic flux density of the applied external magnetic field, respectively. The relation between :math:`\varrho_{L,n}^{(\sigma)}` and :math:`\rho_{L,n}^{(\sigma)}` follows, .. math:: \varrho_{0,0}^{(\sigma)} &= -\frac{1}{\sqrt{3}} \rho_{0,0}^{(\sigma)} \\ \varrho_{2,n}^{(\sigma)} &=\sqrt{\frac{2}{3}} \rho_{2,n}^{(\sigma)} .. cssclass:: table-bordered table-striped centered .. list-table:: A list of scaled spatial orientation tensors in the principal axis system of the nuclear shielding tensor, |SOF| from Eq. :eq:`eq_5`, of rank L resulting from the Mth order perturbation expansion of the Nuclear shielding Hamiltonian is presented. :widths: 25 25 50 :header-rows: 1 * - Order, :math:`M` - Rank, :math:`L` - :math:`\varsigma_{L,n}^{(k)} = \omega_k\varrho_{L,n}^{(k)}` * - 1 - 0 - :math:`\varsigma_{0,0}^{(\sigma)} = -\omega_0\sigma_\text{iso}` * - 1 - 2 - :math:`\varsigma_{2,0}^{(\sigma)} = -\omega_0 \zeta_\sigma`, :math:`\varsigma_{2,\pm1}^{(\sigma)} = 0`, :math:`\varsigma_{2,\pm2}^{(\sigma)} = \frac{1}{\sqrt{6}} \omega_0\eta_\sigma \zeta_\sigma` Electric quadrupole interaction ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The electric field gradient (efg) tensor, :math:`\boldsymbol{\rho}^{(q)}`, is also a second-rank tensor; however, unlike the nuclear shielding tensor, the efg tensor is always a symmetric second-rank irreducible tensor. In the principal axis system, this tensor is given as, .. math:: \begin{array}{c c c} \rho_{2,0}^{(q)} = \sqrt{\frac{3}{2}} \zeta_q, & \rho_{2,\pm1}^{(q)} = 0, & \rho_{2,\pm2}^{(q)} = - \frac{1}{2}\eta_q \zeta_q, \end{array} where :math:`\zeta_q`, and :math:`\eta_q` are the efg tensor anisotropy and asymmetry of the site, respectively. The efg anisotropy and asymmetry values are defined using the Haeberlen convention. **First-order perturbation** The size of the frequency component from the first-order perturbation expansion of Electric quadrupole Hamiltonian is :math:`\omega_k = \omega_q`, where :math:`\omega_q = \frac{6\pi C_q}{2I(2I-1)}` is the quadrupole splitting angular frequency. Here, :math:`C_q` is the quadrupole coupling constant, and :math:`I` is the spin quantum number of the quadrupole nucleus. The relation between :math:`\varrho_{L,n}^{(q)}` and :math:`\rho_{L,n}^{(q)}` follows, .. math:: \varrho_{2,n}^{(q)} = \frac{1}{3\zeta_q} \rho_{2,n}^{(q)}. **Second-order perturbation** The size of the frequency component from the second-order perturbation expansion of Electric quadrupole Hamiltonian is :math:`\omega_k = \frac{\omega_q^2}{\omega_0}`, where :math:`\omega_0` is the Larmor angular frequency of the quadrupole nucleus. The relation between :math:`\varrho_{L,n}^{(qq)}` and :math:`\rho_{L,n}^{(q)}` follows, .. math:: \varrho_{L,n}^{(qq)} = \frac{1}{9\zeta_q^2} \sum_{m=-2}^2 \left \rho_{2,m}^{(q)}~\rho_{2,n-m}^{(q)}, where :math:`\left` is the Clebsch Gordan coefficient. .. cssclass:: table-bordered table-striped centered .. list-table:: A list of scaled spatial orientation tensors in the principal axis system of the efg tensor, |SOF| from Eq. :eq:`eq_5`, of rank L resulting from the Mth order perturbation expansion of the Electric Quadrupole Hamiltonian is presented. :widths: 25 25 50 :header-rows: 1 * - Order, :math:`M` - Rank, :math:`L` - :math:`\varsigma_{L,n}^{(k)} = \omega_k\varrho_{L,n}^{(k)}` * - 1 - 2 - :math:`\varsigma_{2,0}^{(q)} = \frac{1}{\sqrt{6}} \omega_q`, :math:`\varsigma_{2,\pm1}^{(q)} = 0`, :math:`\varsigma_{2,\pm2}^{(q)} = -\frac{1}{6} \eta_q \omega_q` * - 2 - 0 - :math:`\varsigma_{0,0}^{(qq)} = \frac{\omega_q^2}{\omega_0} \frac{1}{6\sqrt{5}} \left(\frac{\eta_q^2}{3} + 1 \right)` * - 2 - 2 - :math:`\varsigma_{2,0}^{(qq)} = \frac{\omega_q^2}{\omega_0} \frac{\sqrt{2}}{6\sqrt{7}} \left(\frac{\eta_q^2}{3} - 1 \right)`, :math:`\varsigma_{2,\pm1}^{(qq)} = 0`, :math:`\varsigma_{2,\pm2}^{(qq)} = -\frac{\omega_q^2}{\omega_0} \frac{1}{3\sqrt{21}} \eta_q` * - 2 - 4 - :math:`\varsigma_{4,0}^{(qq)} = \frac{\omega_q^2}{\omega_0} \frac{1}{\sqrt{70}} \left(\frac{\eta_q^2}{18} + 1 \right)`, :math:`\varsigma_{4,\pm1}^{(qq)} = 0`, :math:`\varsigma_{4,\pm2}^{(qq)} = -\frac{\omega_q^2}{\omega_0} \frac{1}{6\sqrt{7}} \eta_q`, :math:`\varsigma_{4,\pm3}^{(qq)} = 0`, :math:`\varsigma_{4,\pm4}^{(qq)} = \frac{\omega_q^2}{\omega_0} \frac{1}{36} \eta_q^2` Coupled nucleus scaled spatial orientation tensor components ------------------------------------------------------------ Weak :math:`J`-coupling interaction ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The :math:`J`-coupling tensor, :math:`\boldsymbol{\rho}^{(J)}`, is a second-rank reducible tensor, which can be decomposed into a sum of the zeroth-rank isotropic, first-rank anti-symmetric, and second-rank traceless symmetric irreducible spherical tensors. In the principal axis system, the zeroth-rank, :math:`\rho_{0,0}^{(J)}` and the second-rank, :math:`\rho_{2,n}^{(J)}`, irreducible tensors follow, .. math:: \begin{array}{c c c c} \rho_{0,0}^{(J)} = -\sqrt{3} J_\text{iso}, & \rho_{2,0}^{(J)} = \sqrt{\frac{3}{2}} \zeta_J, & \rho_{2,\pm1}^{(J)} = 0, & \rho_{2,\pm2}^{(J)} = - \frac{1}{2}\eta_J \zeta_J, \end{array} where :math:`J_\text{iso}, \zeta_J`, and :math:`\eta_J` are the isotropic :math:`J`-coupling, coupling anisotropy and asymmetry parameters, respectively. The :math:`J` anisotropy and asymmetry are defined using Haeberlen notation. **First-order perturbation** The size of the frequency component from the first-order perturbation expansion of weak J-coupling Hamiltonian is :math:`\omega_k = 2\pi`. The relation between :math:`\varrho_{L,n}^{(J)}` and :math:`\rho_{L,n}^{(J)}` follows, .. math:: \varrho_{0,0}^{(J)} &= -\frac{1}{\sqrt{3}} \rho_{0,0}^{(J)} \\ \varrho_{2,n}^{(J)} &=\sqrt{\frac{2}{3}} \rho_{2,n}^{(J)} .. cssclass:: table-bordered table-striped centered .. list-table:: A list of scaled spatial orientation tensors in the principal axis system of the J-coupling tensor, |SOF| from Eq. :eq:`eq_5`, of rank L resulting from the Mth order perturbation expansion of the J-coupling Hamiltonian is presented. :widths: 25 25 50 :header-rows: 1 * - Order, :math:`M` - Rank, :math:`L` - :math:`\varsigma_{L,n}^{(k)} = \omega_k\varrho_{L,n}^{(k)}` * - 1 - 0 - :math:`\varsigma_{0,0}^{(J)} = 2\pi J_\text{iso}` * - 1 - 2 - :math:`\varsigma_{2,0}^{(J)} = 2\pi \zeta_J`, :math:`\varsigma_{2,\pm1}^{(J)} = 0`, :math:`\varsigma_{2,\pm2}^{(J)} = -\frac{1}{\sqrt{6}} 2\pi\eta_J \zeta_J` Weak dipolar-coupling interaction ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The dipolar-coupling tensor, :math:`\boldsymbol{\rho}^{(d)}`, is a second rank reducible tensor, which can be decomposed as a second-rank traceless symmetric irreducible spherical tensors. In the principal axis system, the second-rank, :math:`\rho_{2,n}^{(d)}`, irreducible tensors follow, .. math:: \begin{array}{c c c c} \rho_{2,0}^{(d)} = \sqrt{\frac{3}{2}} \zeta_d, & \rho_{2,\pm1}^{(d)} = 0, & \rho_{2,\pm2}^{(d)} = 0, \end{array} where :math:`\zeta_d` is second-rank symmetric dipolar coupling tensor anisotropy given as .. math:: \zeta_d = \frac{2}{r^3} where :math:`r` is the distance between two coupled magnetic dipoles. The dipolar splitting is given as .. math:: \omega_d = - \frac{\mu_0}{4\pi} \frac{\gamma_1 \gamma_2 \hbar}{r^3} = - \frac{\mu_0}{8\pi} \zeta_d \gamma_1 \gamma_2 \hbar and the dipolar coupling constant, :math:`D = \frac{\omega_d}{2\pi}`. **First-order perturbation** The size of the frequency component from the first-order perturbation expansion of weak J-coupling Hamiltonian is :math:`\omega_k = \frac{2\omega_d}{\zeta_d}`. The relation between :math:`\varrho_{L,n}^{(d)}` and :math:`\rho_{L,n}^{(d)}` follows, .. math:: \varrho_{2,n}^{(d)} =\sqrt{\frac{2}{3}} \rho_{2,n}^{(d)} .. cssclass:: table-bordered table-striped centered .. list-table:: A list of scaled spatial orientation tensors in the principal axis system of the dipolar-coupling tensor, |SOF| from Eq. :eq:`eq_5`, of rank L resulting from the Mth order perturbation expansion of the dipolar-coupling Hamiltonian is presented. :widths: 25 25 50 :header-rows: 1 * - Order, :math:`M` - Rank, :math:`L` - :math:`\varsigma_{L,n}^{(k)} = \omega_k\varrho_{L,n}^{(k)}` * - 1 - 2 - :math:`\varsigma_{2,0}^{(d)} = 2\omega_d`, :math:`\varsigma_{2,\pm1}^{(d)} = 0`, :math:`\varsigma_{2,\pm2}^{(d)} = 0` .. _spin_transition_theory: Spin transition functions, :math:`\xi_\ell^{(k)}(i,j)` ====================================================== The spin transition function is typically manipulated via the coupling of the nuclear magnetic dipole moment with the oscillating external magnetic field from the applied radio-frequency pulse. Considering the strength of the external magnetic rf field is orders of magnitude larger than the internal spin-couplings, the manipulation of spin transition functions is described using the orthogonal rotation subgroups. Single nucleus spin transition functions ---------------------------------------- .. cssclass:: table-bordered table-striped centered .. list-table:: A list of single nucleus spin transition functions, :math:`\xi_\ell^{(k)}(i,j)`. :widths: 10 12 43 35 :header-rows: 1 * - :math:`\xi_\ell^{(k)}(i,j)` - Rank, :math:`\ell` - Value - Description * - :math:`\mathbb{s}(i,j)` - 0 - :math:`0` - :math:`\left< j | \hat{T}_{00} | j \right> - \left< i | \hat{T}_{00} | i \right>` * - :math:`\mathbb{p}(i,j)` - 1 - :math:`j-i` - :math:`\left< j | \hat{T}_{10} | j \right> - \left< i | \hat{T}_{10} | i \right>` * - :math:`\mathbb{d}(i,j)` - 2 - :math:`\sqrt{\frac{3}{2}} \left(j^2 - i^2 \right)` - :math:`\left< j | \hat{T}_{20} | j \right> - \left< i | \hat{T}_{20} | i \right>` * - :math:`\mathbb{f}(i,j)` - 3 - :math:`\frac{1}{\sqrt{10}} [5(j^3 - i^3) + (1 - 3I(I+1))(j-i)]` - :math:`\left< j | \hat{T}_{30} | j \right> - \left< i | \hat{T}_{30} | i \right>` .. _irreducible_tensors: Here, :math:`\hat{T}_{\ell,k}(\bf{I})` are the irreducible spherical tensor operators of rank :math:`\ell`, :math:`k \in [-\ell, \ell]`, for transition :math:`|i\rangle \rightarrow |j\rangle`. In terms of the tensor product of the Cartesian operators, the above spherical tensors are expressed as follows, .. cssclass:: table-bordered table-striped centered .. list-table:: :widths: 50 50 :header-rows: 1 * - Spherical tensor operator - Representation in Cartesian operators * - :math:`\hat{T}_{0,0}(\bf{I})` - :math:`\hat{1}` * - :math:`\hat{T}_{1,0}(\bf{I})` - :math:`\hat{I}_z` * - :math:`\hat{T}_{2,0}(\bf{I})` - :math:`\frac{1}{\sqrt{6}} \left[3\hat{I}^2_z - I(I+1)\hat{1} \right]` * - :math:`\hat{T}_{3,0}(\bf{I})` - :math:`\frac{1}{\sqrt{10}} \left[5\hat{I}^3_z + \left(1 - 3I(I+1)\right)\hat{I}_z\right]` where :math:`I` is the spin quantum number of the nucleus and :math:`\hat{\bf{1}}` is the identity operator. .. cssclass:: table-bordered table-striped centered .. list-table:: A list of composite single nucleus spin transition functions, :math:`\xi_\ell^{(k)}(i,j)`. Here, `I` is the spin quantum number of the nucleus. :widths: 50 50 :header-rows: 1 * - :math:`\xi_\ell^{(k)}(i,j)` - Value * - :math:`\mathbb{c}_0(i,j)` - :math:`\frac{4}{\sqrt{125}} \left[I(I+1) - \frac{3}{4}\right] \mathbb{p}(i, j) + \sqrt{\frac{18}{25}} \mathbb{f}(i, j)` * - :math:`\mathbb{c}_2(i,j)` - :math:`\sqrt{\frac{2}{175}} \left[I(I+1) - \frac{3}{4}\right] \mathbb{p}(i, j) - \frac{6}{\sqrt{35}} \mathbb{f}(i, j)` * - :math:`\mathbb{c}_4(i,j)` - :math:`-\sqrt{\frac{18}{875}} \left[I(I+1) - \frac{3}{4}\right] \mathbb{p}(i, j) - \frac{17}{\sqrt{175}} \mathbb{f}(i, j)` Weakly coupled nucleus spin transition functions ------------------------------------------------ .. cssclass:: table-bordered table-striped centered .. list-table:: A list of weakly coupled nucleus spin transition functions, :math:`\xi_\ell^{(k)}(m_{f_I}, m_{f_S}, m_{i_I}, m_{i_S})`. :widths: 22 22 56 :header-rows: 1 * - :math:`\xi_\ell^{(k)}(m_{f_I}, m_{f_S}, m_{i_I}, m_{i_S})` - Value - Description * - :math:`(\mathbb{pp})_{IS}(m_{f_I}, m_{f_S}, m_{i_I}, m_{i_S})` - :math:`m_{f_I} m_{f_S} - m_{i_I} m_{i_S}` - :math:`\left< m_{f_I} m_{f_S} | \hat{T}_{10}(I) \hat{T}_{10}(S) | m_{f_I} m_{f_S} \right>` – :math:`\left< m_{i_I} m_{i_S} | \hat{T}_{10}(I) \hat{T}_{10}(S) | m_{i_I} m_{i_S} \right>` Here, :math:`\hat{T}_{\ell,k}(\bf{I})` are the irreducible spherical tensor operators of rank :math:`\ell`, :math:`k \in [-\ell, \ell]`, for transition :math:`|m_{i_I} m_{i_S}\rangle \rightarrow |m_{f_I} m_{f_S}\rangle` in weakly coupled basis. .. _frequency_tensor_theory: Frequency tensor components (FT) in PAS, :math:`\varpi_{\ell,L, n}^{(k)}` ========================================================================= .. cssclass:: table-bordered table-striped centered .. _tb_freq_components: .. list-table:: The table presents a list of frequency tensors defined in the principal axis system of the respective interaction tensor from Eq. :eq:`eq_7`, :math:`\varpi_{\ell,L,n}^{(k)}`, of ranks :math:`\ell` and :math:`L` resulting from the Mth order perturbation expansion of the interaction Hamiltonian supported in mrsimulator. :widths: 20 15 15 50 :header-rows: 1 * - Interaction - Order, :math:`M` - Rank, :math:`L` - :math:`\varpi_{\ell,L,n}^{(k)}` * - Nuclear shielding - 1 - 0 - :math:`\varpi_{1,0,0}^{(\sigma)} = \varsigma_{0,0}^{(\sigma)} ~~ \mathbb{p}(i, j)` * - Nuclear shielding - 1 - 2 - :math:`\varpi_{1,2,n}^{(\sigma)} = \varsigma_{2,n}^{(\sigma)} ~~ \mathbb{p}(i, j)` * - Electric Quadrupole - 1 - 2 - :math:`\varpi_{2,2,n}^{(q)} = \varsigma_{2,n}^{(q)} ~~ \mathbb{d}(i, j)` * - Electric Quadrupole - 2 - 0 - :math:`\varpi_{c_0,0,0}^{(qq)} = \varsigma_{0,0}^{(qq)} ~~ \mathbb{c}_0(i, j)` * - Electric Quadrupole - 2 - 2 - :math:`\varpi_{c_2,2,n}^{(qq)} = \varsigma_{2,n}^{(qq)} ~~ \mathbb{c}_2(i, j)` * - Electric Quadrupole - 2 - 4 - :math:`\varpi_{c_4,4,n}^{(qq)} = \varsigma_{4,n}^{(qq)} ~~ \mathbb{c}_4(i, j)` * - Weak :math:`J`-coupling - 1 - 0 - :math:`\varpi_{(1,1),0,0}^{(J)} = \varsigma_{0,0}^{(J)} ~~ (\mathbb{pp})_{IS}(m_{f_I}, m_{f_S}, m_{i_I}, m_{i_S})` * - Weak :math:`J`-coupling - 1 - 2 - :math:`\varpi_{(1,1),2,n}^{(J)} = \varsigma_{2,n}^{(J)} ~~ (\mathbb{pp})_{IS}(m_{f_I}, m_{f_S}, m_{i_I}, m_{i_S})` * - Weak dipolar-coupling - 1 - 2 - :math:`\varpi_{(1,1),2,n}^{(d)} = \varsigma_{2,n}^{(d)} ~~ (\mathbb{pp})_{IS}(m_{f_I}, m_{f_S}, m_{i_I}, m_{i_S})` **References** .. [#f1] Grandinetti, P. J., Ash, J. T., Trease, N. M. Symmetry pathways in solid-state NMR, PNMRS 2011 **59**, *2*, 121-196. `DOI: 10.1016/j.pnmrs.2010.11.003 `_