Note
Go to the end to download the full example code.
Top-Hat Apodization¶
In this example, we will use the
TopHat
class to apply a
point-wise top hat apodization on the Fourier transform of an example dataset. The
function is defined as follows
where rising_edge
is the start of the window and falling_edge
is the end of the window.
When falling_edge
is undefined, all points after rising_edge
will be 1.
Similarly, when rising_edge
is undefined, all points before falling_edge
are 1.
Below we import the necessary modules
import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np
from mrsimulator import signal_processor as sp
First we create processor
, and instance of the
SignalProcessor
class. The required
attribute of the SignalProcessor class, operations, is a list of operations to which
we add a TopHat
object
sandwiched between two Fourier transformations. Here the window is between
1 and 9 seconds.
processor = sp.SignalProcessor(
operations=[
sp.IFFT(),
sp.apodization.TopHat(rising_edge="1 s", falling_edge="9 s"),
sp.FFT(),
]
)
Next we create a CSDM object with a test dataset which our signal processor will operate on. Here, the dataset is a delta function centered at 0 Hz with a some applied Gaussian line broadening.
test_data = np.zeros(500)
test_data[250] = 1
csdm_object = cp.CSDM(
dependent_variables=[cp.as_dependent_variable(test_data)],
dimensions=[cp.LinearDimension(count=500, increment="0.1 Hz", complex_fft=True)],
)
To apply the previously defined signal processor, we use the
apply_operations()
method as
as follows
processed_dataset = processor.apply_operations(dataset=csdm_object).real
To see the results of the top hat apodization, we create a simple plot using the
matplotlib
library.
fig, ax = plt.subplots(1, 2, figsize=(8, 3.5), subplot_kw={"projection": "csdm"})
ax[0].plot(csdm_object, color="black", linewidth=1)
ax[0].set_title("Before")
ax[1].plot(processed_dataset.real, color="black", linewidth=1)
ax[1].set_title("After")
plt.tight_layout()
plt.show()

Below are plots showing how the apodization functions when only rising_edge
or
falling_edge
are defined.
rising_edge_processor = sp.SignalProcessor(
operations=[sp.apodization.TopHat(rising_edge="2 s")]
)
falling_edge_processor = sp.SignalProcessor(
operations=[sp.apodization.TopHat(falling_edge="8 s")]
)
constant_csdm = cp.CSDM(
dependent_variables=[cp.as_dependent_variable(np.ones(100))],
dimensions=[cp.LinearDimension(100, increment="0.1 s")],
)
rising_dataset = rising_edge_processor.apply_operations(
dataset=constant_csdm.copy()
).real
falling_dataset = falling_edge_processor.apply_operations(
dataset=constant_csdm.copy()
).real
fig, ax = plt.subplots(1, 2, figsize=(8, 3.5), subplot_kw={"projection": "csdm"})
ax[0].plot(rising_dataset, color="black", linewidth=1)
ax[0].set_title("rising_edge")
ax[1].plot(falling_dataset, color="black", linewidth=1)
ax[1].set_title("falling_edge")
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.776 seconds)